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Abstract— In this study, a model based robust control scheme
is developed for kinematically redundant robot manipulators
that also enables the use of self motion of the manipulator to
perform multiple sub-tasks in order to increase the manipulabil-
ity and/or performance of the system. The proposed controller
ensures uniformly ultimately bounded end-effector and sub-task
tracking despite the parametric uncertainty associated with the
dynamic model. A Lyapunov based approach has been utilized
in the controller design and extension to a non minimum set of
parameters for orientation representation has been presented
to illustrate the flexibility of the approach. The capabilities
and performance of the resulting controller is demonstrated by
simulation results.

Index Terms— Robot control, kinematically redundant ma-
nipulator, self-motion control, robust/variable structure control.

I. INTRODUCTION

Robotic manipulators are highly nonlinear multi-input
multi-output systems subjected to uncertainties associated
with their dynamics. Moreover, external disturbances are
inevitable under practical operation conditions. For this
reason an efficient tracking controller for robot manipula-
tors should achieve sufficient robustness versus parametric
uncertainties in the dynamics, as well as external addi-
tive disturbances. Kinematically redundant manipulators are
complicated robotic systems with more degrees of freedom
(DOF) than required to perform a task in the operation space.
Owing to their extra DOF they can achieve much better
performance in more dextrous operations, and/or have the
increased flexibility for the execution of sophisticated tasks.
Since the dimension ( i.e., n) of their link position variables
is greater than the dimension (i.e., m) of the operational
space variables, the null space of their Jacobian matrix has
a minimum dimension of n − m. Any link velocity in the
null space of the manipulator Jacobian will not effect the
operational space velocity and hence is referred to as self-
motion. As stated in [1], [2], and [3], there are generally an
infinite number of solutions for the inverse kinematics of a
redundant manipulator. Thus, given a desired end effector
trajectory, it is difficult to select a reasonable joint space
trajectory that satisfies both control constraints (i.e., stability
and boundedness of all signals) and mechanical constraints
(i.e., singularities and joint limit avoidance). Therefore an
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efficient controller for kinematically redundant robot ma-
nipulators should be robust to parametric uncertainties and
external disturbances, and achieve accurate end effector
tracking, while reserving the self motion of the manipulator
available for performance enhancement.

Many robotic manipulators are non-planar in geometry.
For accurate operation in 3D task space, singularity free
representation of the position and orientation (pose) infor-
mation is also important. Frequently adapted orientation
representation techniques such as Euler angles and Ro-
driguez parameters, have singularities for certain parts of
operational space, which degrade controller operation. These
singularities can be avoided by the utilization of 4 parameter
based unit quaternion representations, however this slightly
complicates the overall control design.

Due to the challenging nature of the fore-mentioned con-
trol design problem, many researches have proposed alter-
native solutions. To name a few; in [4], Khatib proposed a
control scheme based on the dynamic model of a manipulator
in Cartesian space and extended this result for redundant
manipulators by using the pseudo-inverse of the Jacobian
matrix. In [5], Seraji proposed the configuration control
approach in which the end-effector motion in task-space is
augmented by any n−m dimensional additional tasks, such
as optimization of kinematic and dynamic objectives or pos-
ture control. In [6], Hsu et.al. proposed a dynamic feedback
linearizing control law that guarantees end-effector tracking
and also provides control of redundant link velocities. In
[7], Oh et.al. proposed a disturbance observer based robust
controller that controls both the motion of the end effector
and the null space motion of the redundant manipulator. In
[8], Zergeroglu et.al. presented a model based controller that
achieves exponential end-effector and sub-task tracking. The
extensions for adaptive and model based output feedback
type of controllers were also presented. However these
controllers either required the exact knowledge of the dy-
namics, or assumed linearly parameterizable uncertain robot
dynamics and the absence of external disturbances. From an
examination of these previous research, we can group the
control strategies for kinematically redundant manipulators
in two categories. The first approach is based on extending
the dimension of the operational space by incorporating
additional constraints, so that the overall system becomes
non-redundant. This approach usually introduces additional
algorithmic singularities in the extended Jacobian matrix, and
hence can cause the control input to become unbounded even
away from manipulator singularities. The second approach
is the generalized/pseudo-inverse based control formulations



that utilize the pseudo-inverse of the manipulator Jacobian.
This approach can not guarantee that the control remains
bounded near the actual manipulator singularities, however
it does not introduce further singularities. Considering more
recent work, in [16], Braganza et.al. proposed an adaptive
tracking controller for robot manipulators with both kine-
matic and dynamic uncertainties; and in [17], Tatlicioglu
et.al. proposed an adaptive controller with some sub-task
extensions, however most of these extensions required exact
knowledge of the robot dynamics.

In this paper we have designed a robust controller
for kinematically redundant robot manipulators based on
generalized/pseudo-inverse formulation and the 4 parameter
unit quaternion representation. Specifically we have devel-
oped a robust controller that achieves uniform ultimately
bounded end-effector and sub-task tracking despite the para-
metric uncertainties associated with the dynamics and ex-
ternal additive disturbances. The proposed controller is also
efficient for sub-task control. When compared with the previ-
ous controllers; with respect to [6] the controller proposed is
robust to the parametric uncertainties in the robot dynamics.
Compared to [7], the proposed controller does not introduce
additional singularity issues due to the extended Jacobian
formulation and with respect to [8] the proposed controller is
capable of compensating a larger class of uncertainties. Also
compared to [17] the proposed controller can compensate a
larger set of uncertainties, includes a more realistic frictional
term model with non-linearly parameterizable elements, and
can perform multiple sub-task objectives without the need
for system dynamical information.

The rest of the paper is organized as follows. Section II
presents the kinematic and dynamic properties of redundant
robot manipulators. Section III gives an introduction to
quaternions. Section IV states the control objective and
outlines the error system development. The controller design
is presented in Section V. The use of multiple sub-task
criteria for possible performance enhancement is presented
in Section VI, followed by Simulation results in Section
VII. Finally Section VIII contains the conclusions and future
work.

II. ROBOT MODEL

A. Kinematic Model

The end-effector position and orientation in the operation
space, denoted by x(t) ∈ R

m, is defined as a function of
joint position vector as [9]

x = f(q) =
[

p (q)
φ (q)

]
(1)

where f(q) ∈ R
m, m ∈ Z is the forward kinematic

calculations, q(t) ∈ R
n denote the link position vector of an

n-link manipulator p (q) ∈ R
l and φ (q) ∈ R

(m−l) are the
vectors representing the end-effector position, and orientation
respectively and l ∈ Z is the size of the operational space.

From (1), the differential relationships between the end-
effector and link position variables, is obtained as follows:

ẋ = J(q) q̇

ẍ = J̇(q)q̇ + J(q)q̈
(2)

where q̇(t), q̈(t) ∈ R
n denote the link velocity and accelera-

tion vectors, respectively and J(q) � ∂f(q)/∂q,∈ R
m×n

is the Jacobian matrix of the manipulator. Note that for
kinematically redundant manipulators the joint velocities
may also be represented using (2) as follows

q̇ = J+ẋ + (In − J+J) g
= J+ẋ + k (In − J+J) [∇H (q)] (3)

where J+(q) ∈ R
n×m is the pseudo-inverse of the manipu-

lator Jacobian and is defined in the following form [10]

J+ = JT
(
JJT

)−1
such that JJ+ = Im. (4)

In (3) In ∈ R
n×n denotes the n × n identity matrix,

(In − J+J) is the null space projection matrix. J+ẋ is the
minimum norm joint velocity solution, (In − J+J) g is a
homogenous solution of (3) in the null space of J orthogonal
to J+ẋ and g(t) ∈ R

n is an auxiliary joint velocity vector
which can be constructed to improve the performance of the
manipulator according to the sub-task control objective (e.g.,
mechanical limit avoidance, or obstacle avoidance). This
possible performance enhancement is achieved by optimizing
a proper performance criterion function, H (q) ∈ R, where
∇H (q) is the gradient of H (q) and k is a real valued scalar.

B. Dynamic Model

The dynamic model for an n-link, revolute, direct drive
robot manipulator is assumed to be in the following form
[9]

M(q)q̈ + C(q, q̇)q̇ + G(q) + F (q̇) + ξd = τ (5)
where M(q) ∈ R

n×n represents the inertia matrix, C(q, q̇) ∈
R

n×n represents the centripetal-Coriolis matrix, G(q) ∈ R
n

is the gravity vector, F (q̇) ∈ R
n represents the friction

effects, ξd ∈ R
n is a vector containing the unknown but

bounded, additive disturbance effects and τ(t) ∈ R
n is the

torque input vector.
During the control development, we will make the com-

monly used assumption that the minimum singular value
of the manipulator Jacobian, denoted by σm is greater
than a known small positive constant δ > 0, such that
max {‖J+(q)‖} is known a prior and all kinematic singu-
larities are always avoided. We also note that since we are
only concerned with revolute robot manipulators, we know
that kinematic and dynamic terms denoted by M(q), C(q, q̇),
G(q), J(q), and J+(q) are bounded for all possible q(t).

III. UNIT QUATERNIONS FOR 3D ORIENTATION

In controller formulations for 3D task space operation,
using a minimum set of 3-parameter representations, (ie. such
as Euler angles) only forms a local parametrization of SO (3)
and exhibits singularities [13]. On the other hand quaternions
provide a global nonsingular parametrization of SO (3) at
the cost of using 4-parameters for orientation. To utilize the
advantages of nonsingular parametrization, we will follow a
quaternion based approach.

Let the description of the manipulator’s end-effector ori-
entation with respect to its base frame is given by unit
quaternion φ (t) = [η(t),−→ε (t)]T ∈ R × R3 with



η(t) � cos
(

ϕ
2

)
, −→ε (t) = [ε1 ε2 ε3]

T � a sin
(

ϕ
2

)
(6)

where ϕ (t) ∈ [0, 2π) and a (t) ∈ R
3 are the Euler angle/axis

parameters subject to the constraint −→ε T−→ε + η2 = 1. Note
that given a unit quaternion representation, φ (t) , the corre-
sponding rotation matrix R (q) ∈ R

3×3 can be determined
the formula [14]

R (q) =
(
η2 −−→ε T−→ε )

I3 + 2−→ε −→ε T − 2η−→ε ×. (7)

where the notation −→a ×, ∀−→a = [a1 a2 a3]
T , denotes the

skew-symmetric matrix of the form

(−→a )× �

⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ . (8)

From quaternion algebra and (1), the differential relationship
of (2) can be reformulated to have the form[

ṗ

φ̇

]
=

[
Jp(q)
Jφ(q)

]
q̇ (9)

where Jp(q) ∈ R
3×n and Jφ(q) ∈ R

4×n denote the position
and orientation Jacobians respectively. The end effector
angular velocity expressed in the manipulators base frame
ω(t) ∈ R

3 is related to φ (t) via the following equation

φ̇ =
1
2
B(η,−→ε )ω with B(η,−→ε ) �

[ −−→ε T

ηI3 −−→ε ×

]
∈ R

4×3.

(10)
Applying BT B = I3 to (9) the following expression relating
the end-effector velocity vector to the joint velocity vector
can be obtained [

ṗ
ω

]
= Jq(q)q̇, (11)

where the end effector Jacobian matrix Jq(q) ∈ R
6×n is:

Jq(q) �
[

Jp(q)
2BT Jφ(q)

]
. (12)

IV. CONTROL OBJECTIVE

Our control objective is to design the control torque input
signal τ (t) such that the robots end effector can follow a
desired end effector pose signal as closely as possible. The
designed control signal should also enable the redundancy of
the manipulator to execute sub-tasks defined by at least one
motion optimization measure (such as joint limit avoidance
and/or obstacle avoidance). We will refer to the task space
tracking as our ”main” objective and enabling the use of
manipulators redundancy as our secondary or ”sub-task”
objective.

A. Control Objective

To obtain a mathematical measure for our main control
objective, we now define the desired end effector position and
orientation and corresponding error signals. The end effector
position tracking error is:

ep = pd − p (13)

where pd (t) ∈ R
3 is the desired end effector position vector

with the assumption that pd(t), ṗd(t), and p̈d(t) are all
bounded functions of time. To quantify the error between
the actual and desired end effector orientations, we define the
rotation error matrix R̃ � RRT

d and the corresponding unit
quaternion error representation is denoted by eφ � [eη, eε]

T .

The angular velocity of the end effector frame with respect
to the desired end effector frame ω̃ (t) is defined as

ω̃ (t) = ω − R̃ωd (14)

where ω (t) was defined in (11) and ωd (t) is the angular
velocity of the desired end effector frame with respect to
manipulator base frame. Similar to (10) the time derivative
of φd(t) is related to ωd (t) through

φ̇d =
1
2
B (ηd,

−→ε d)ωd (15)

Based on the above definitions, our main control objective
is to design the control torque input signal τ (t) to ensure
that the end-effector position and orientation should track
the desired end effector pose signals as close as possible.
For our redundancy performance objective, we define the
sub-task tracking error, eN(t) ∈ R

n as follows [6]:

eN = (In − J+J) (g − q̇) (16)

where In ∈ R
n×n denotes the n × n identity matrix.

B. Error System Formulation

To obtain the end-effector position error formulation we
take the time derivative of (13) to produce

ėp = ṗd − ṗ (17)

Similarly for the end-effector orientation error system for-
mulation we utilized (10), (15), and (14), to obtain the time
derivative of the unit quaternion eφ (t) as follows

ėφ =
1
2
B(eη, eε)ω̃ (18)

where B (·) ∈ R
4×3 was defined in (10). Using (10) and

(15) the end effector orientation error can be formulated as

ėη = − 1
2eT

ε ω̃, ėε = 1
2 (eηI3 − e×ε ) ω̃. (19)

At this point, following a similar approach given in [15], we
define the following non negative scale function

Vo =
1
2
eT

p ep + (1 − eη)2 + eT
ε eε. (20)

Taking the time derivative of (20) along (17) and (19) then
applying (14) we obtain

V̇o = eT
p (ṗd − ṗ) + eT

ε RT
d (ω − ωd) (21)

After some mathematical manipulations (21) can be read-
justed to the following form

V̇o = −eT
p Kpep − eT

ε Koeε +
[

eT
p eT

ε

]
Jexrq (22)

where the filtered tracking error like term rq and the extended
Jacobian matrix Jex ∈ R

6×n are defined as

rq � (Jex)
#

[
ṗd + Kpep

−RT
d ωd + Koeε

]
+ (In − J+

q Jq)g − q̇

Jex �
[

I3 03×3

03×3 −RT
d

]
Jq, (Jex)

#

� J+
q

[
I3 03×3

03×3 −Rd

]

(23)
with Kp, Ko of rq being diagonal, positive definite gain
matrices of proper dimensions, and g ∈ R

n is the component
for sub-task objective. Pre-multiplying rq (t) defined in (23)
with (In − J+

q Jq), we obtain the following relationship

eN = (In − J+
q Jq)rq (24)

which indicates when rq (t) is regulated the sub-task tracking
error defined in (16) will also be regulated. Based on the



structure of (20), (22) and the definition of rq (t) given in
(23), the open loop dynamics of rq (t) can be obtained by
pre-multiplying the time derivative of rq (t) by M (q) and
utilizing (5) to be in the following form:

Mṙq = −Crq + ωrq − τ (25)

where the function ωrq (t) is defined explicitly as follows

ωrq �
M (q)

d

dt

{
(Jex)#

[
ṗd + Kpep

−RT
d ωd + Koeε

]
+ (In − J+

q Jq)g
}

+C (q, q̇)
{

(Jex)#
[

ṗd + Kpep

−RT
d ωd + Koeε

]
+ (In − J+

q Jq)g
}

+G(q) + F (q̇) + ξd.
(26)

Note that using the linearly parametrization property of the
manipulator dynamics, ωrq, can also be separated into LP
and non-LP parts denoted by Wqθ and ξrq as follows:

ωrq = Wqθ + ξrq (27)

V. CONTROL DESIGN AND ANALYSIS

With the construction of the error dynamics as in (22) and
(25), it is clear that a controller of the following from

τ = Wq θ̂ + Kqrq + JT
ex

[
ep

eε

]
+

rqρ
2
q

‖rq‖ ρq + ε
(28)

will ensure the globally uniformly ultimately boundedness of
ep (t) , eε (t) and rq (t), where θ̂ is the vector of best guest
estimates that were defined in (27), Kq is a diagonal positive
definite gain matrix with proper size, ρq is the bounding
function selected to satisfy

ρq ≥
∥∥∥Wq θ̃

∥∥∥ + ‖ξrq‖ . (29)

Substituting (28) into (25) the closed loop error system for
rq (t) can be obtained to be:

Mṙq = −Crq + Wq θ̃ + ξrq − Kqrq − JT
ex

[
ep

eε

]
− rqρ2

q

‖rq‖ρq+ε

(30)
We are now ready to state the following theorem.

Theorem 1: The robust control law described by (28)
ensures the globally uniform ultimately boundedness (UUB)
of both the end effector position and orientation error signals
in the sense that

‖ep(t)‖ , ‖eε(t)‖ ≤ ‖zq(t)‖ < d, t ≥ 0 (31)

where the composite state vector zq (t) , is defined as

zq (t) �
[

rT
q eT

p eT
ε

]T
(32)

In (31), d ∈ R is a positive constant that defines the ultimate
bound containing the end effector position and orientation
error in the following form

d =

√√√√
(
‖zq(0)‖2 +

(
ε

λ3
+ ϕ

))
λ1

exp
(
−λ3

λ1
t

)
+

ε + λ3ϕ

λ1λ3
,

(33)
where ε was introduced in (28), and the nonnegative func-
tions ϕ, λ1, λ2, λ3 ∈ R are defined as follows:

ϕ = (1 − eη)2 , λ1 = min
{

1
2 , m1

2

}
, λ2 = max

{
1, m2

2

}
,

λ3 = min {λmin (Kq) , λmin (Kp) , λmin (Ko)} . (34)

Proof: To prove Theorem 1, we start by defining the
following non-negative scalar function

V =
1
2
rT
q Mrq + Vo (35)

where Vo was defined in (20). From direct application of
properties of robot dynamics it is clear that (35) can be lower
and upper bounded as follows

λ1 ‖zq‖2 ≤ V (zq, t) ≤ λ2 ‖zq‖2 + ϕ (36)

where λ1and ϕ were defined in (34). Notice that the non
negative function γ2 (‖zq‖) = λ2 ‖zq‖2 + ϕ is radially
unbounded, since γ2 (0) = 0 (As zq = 0 implies eη =
1) and limzp→∞ γ2 (‖zq‖) = ∞ . After taking the time
derivative of (35), substituting (22) and (30), cancelling
common terms, and using the well-known skew symmetry
property of inertia and coriolis matrices of robot dynamics,
the following expression can be obtained

V̇ = −eT
p Kpep − eT

ε Koeε

+rT
q

(
Wq θ̃ + ξrq − Kqrq − rqρ2

q

‖rq‖ρq+ε

)
.

(37)

Utilizing (29), (34) and the following result:

ρq ‖rq‖ −
ρ2

q ‖rq‖2

ρq ‖rq‖ + ε
= ρq ‖rq‖

(
1 − ρq ‖rq‖

ρq ‖rq‖ + ε

)
≤ ε,

(38)
we can place the following upper bound on the right hand
side of (37)

V̇ ≤ −λ3 ‖zq‖2 + ε. (39)

Utilizing left hand side of the inequality of (36)

V̇ ≤ −λ3

λ2
V +

ε + λ3ϕ

λ2
(40)

From (35) and (40), it is clear that the following condition
holds

V (t) ≤ V (0) exp
(
−λ3

λ2
t
)

+ (ε+λ3ϕ)
λ3

(
1 − exp

(
−λ3

λ2
t
))
(41)

Now we can utilize (34), (36) and (41) to obtain the result
in Theorem 1. Hence when rq (t) is regulated inside an
ultimate bound, from (24) the sub-task tracking signals will
also approach to an ultimate bound in finite time. �

Remark 1: Taking the limit of (34) as time approaches to
infinity, we obtain

lim
t→∞ d =

ε

λ3
+

ϕ

λ1
, (42)

which might mislead to a false conclusion, due to the term
ϕ
λ1

, that the size of the ultimate bound is not small enough
for accurate tracking. However, we want to point out that as
eε(t) approaches inside the ultimate bound, the effect of this
term on the ultimate bound also decreases since the value
of eη approaches to a value around 1.



VI. MULTIPLE SELF MOTION PERFORMANCE
CRITERIA OPTIMIZATION

The controller proposed Section V can achieve GUUB
operational space tracking and still has the redundancy of the
robot available to perform sub-tasks by utilization of the self
motion of the manipulator. When the manipulator is subject
to multiple performance criteria, the suitable selection and
manipulation of the sub-tasks can be carried out according
to the performance criterion function H (q) defined in (3). An
elegant way proposed in [18] suggests that, after the selection
of proper performance criteria, their weighted sum can be
formulated as an overall performance criterion as follows

H (q) =
s∑

i=1

ωiHi (q) (43)

where Hi (q) is the scaler function expressing the ith desired
performance criterion, ωi’s are positive valued, scaled func-
tions representing the corresponding weights, and s ∈ Z+ is
the maximum number of self motion (sub-task) criteria. Uti-
lizing (43), the auxiliary joint velocity vector g (t), defined
in (3) can be expressed in the following form

g (t) = k

s∑
i=1

ωi [∇Hi] = k (ω1g1 + ω2g3... + ωsgs) (44)

where self motion control parameter k ∈ R was previously
defined. Based on (44), multiple sub-task prioritization asso-
ciated to the task can be achieved by adjusting the values of
ωi’s that are subject to the following constraint

s∑
i=1

ωi = P (45)

where P is a real valued constant and is used in conjunction
with the self motion control parameter k. Taken to the
extreme, ωi can be adjusted through out the execution of
the task depending on the importance level of sub-task
(e.g. giving more importance to joint limit avoidance then
manipulability when the robot is very close to one of its
joint limits).

A. Manipulability or Singularity Avoidance

By using the above principles, our first sub-task objective
will be based on singularity avoidance for an nth DOF
redundant manipulator, in addition to the main UUB tracking
objective. Hence the performance criterion function will be
selected according to the manipulability measure by [11]:

H (q) =
√

det (JJT ) (46)

where J(q) is the manipulator Jacobian. This performance
criterion function is based on purely robot kinematics. H (q)
declines to zero, when the manipulator approaches its singu-
larities, thus it serves as a model on how far the manipulator
is away from its singularities.

B. Manipulability and Joint Limit Avoidance

Nearly all robot manipulators are susceptible to joint limits
as a result of their mechanical properties. That is the robot
joint angles cannot be higher or lower respectively than a
specified maximum angle qimax and a minimum angle qimin .

For this reason another important sub-task for redundant
manipulators is joint limit avoidance. As a related measure,
we have adopted the following function of joint variables
qi(t) and limits from [20]:

H (q) =
n∏

i=1

4
(qimax − qi)(qi − qimin)

(qimax − qimin)2
, (47)

where n is the number of robot joints. This function is the
sum of contributions from all joint limits and automatically
gives higher weight to the joints further away from their
bounds. Accordingly, each term of the summation (47) takes
the value 1 when the robot is at the furthest angle from the
associated upper and lower joint limits, and declines to zero
at the limits. Hence this function also offers a normalization
on the variations of robot motion.

The advantage of employed multi-performance criteria
method is that each sub-task objective can be combined in
a weighted sum to from an overall objective. Accordingly
the two sub-objectives of manipulability and joint limit
avoidance can be combined via (44) to form the multi-
subtask criteria. Thus if these are of equal importance in the
robot operation range, their sums can be weighted equally
with 0.5 value as follows:

H (q) = 0.5
(√

det (JJT )
)

+ 0.5
(∏n

i=1 4 (qimax−qi)(qi−qimin
)

(qimax−qimin
)2

)
.

(48)

If the operation of the robot is more under the influence of
one singularity than the other these weight can be increased
or decreased accordingly.

VII. SIMULATION RESULTS

To illustrate the performance of the proposed controller,
an initial set of simulation results will be presented. In these
simulations we have utilized the model of a Puma 560 type
robot manipulator with the dynamical terms as in [19]. The
desired task-space position trajectory, was selected to be:⎡
⎣ xd (t)

yd (t)
zd (t)

⎤
⎦ =

⎡
⎣ 0.1 sin(0.5t)(1 − e−0.1t3) + 0.17

0.1 sin(0.5t)(1 − e−0.1t3) − 0.62
0.014

⎤
⎦ [m]

(49)
and the orientation trajectory was generated by the following
angular velocity components obtained from (15) as:

ωdx,y,z (t) = 0.02 cos(0.5t)(1 − e−0.1t3)
+ 0.01 sin(0.5t)(1 − e−0.1t3)

[rad/s] (50)

with the initial quaternion, qd(0) = [−0.5, 0.5, 0.5, 0.5]T .
The controller parameters are tuned to the following values
for satisfactory controller performance:

Kp = diag
{

18 18 20
}

, Ko = diag
{

15 17 17
}

Kq = diag
{

90 450 280 28 17 12
}

ρ = 8, ε = 0.05 (51)
Figure 1 depicts the position errors, where all terms

quickly converge to zero after a short initial transient period.
The orientation errors also show similar characteristic as in
Figure 2 with the real part of error eη tending to unity and
the imaginary components of eε to zero in parallel with the
stability properties of the designed controller. The torques
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Fig. 1. Position errors for the designed controller
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Fig. 2. Orientation errors for the designed controller
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Fig. 3. Torques for the designed controller.

are in Figure 3, which are bounded functions of time. These
results verify the stability and performance of the proposed
controller.

VIII. CONCLUSION AND FUTURE WORK

In this work, we designed a nonlinear robust controller that
achieves globally uniformly ultimately bounded end-effector
position and orientation and sub-task tracking, despite the
presence of uncertainties in dynamic model and external
disturbances. The control strategy is based on unit quater-
nion orientation representation, uses the pseudo-inverse of
the manipulator Jacobian and does not require computation
of the inverse kinematics. Thus it results in non-singular

controller inputs, improving performance of the design. More
importantly, the controller does not place any restriction on
the self-motion of the manipulator, thus the extra degrees
of freedom are available for sub-tasks like maintaining
manipulability, avoidance of mechanical limits and obstacle
avoidance, without the need for system dynamical parame-
ters. The stability and effectiveness of the designed controller
is verified by simulation results.

Future work on this project will be on application of this
controller to a higher-DOF robot model for achieving multi-
sub task performance criteria optimizations.
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